
Confidential © 2018 Arm Limited

Nick Forrington <nick.forrington@arm.com>
14th September 2018

Arm Tools
Workshop

2 Confidential © 2018 Arm Limited

Agenda

• 9:00 Introduction
• 9:30 Remote Client Setup
• 9:45 DDT Getting Started
• 10:30 15-minute break
• 10:45 Offline Debugging
• 11:15 Memory Debugging – Leaks and Errors
• 12:00 Lunch
• 13:00 Performance Reports and MAP
• 14:30 15-minute break
• 14:45 GPU Debugging and Profiling
• 16:00 Discussion / Finish

Confidential © 2018 Arm Limited

Performance Engineering
Methodology and Tools

4 Confiden(al © 2018 Arm Limited

Welcome to the age of machine-scale computing
It’s dangerous to go alone! Take this.

30 years ago: human-scale computing Today: machine-scale computing

Cray 2:
• 4 vector processors
• 1.9 gigaflops (9.5 mflops/Watt)

Summit:
• 2,282,544 cores
• 2,000,000 gigaflops (154 mflops/Watt)

5 Confidential © 2018 Arm Limited

Your brain is no longer enough
No way around it, you need tools to achieve maximum performance.

• Supercomputers are now incomprehensibly complex.
• Naïve optimization may harm performance.
• Performance engineering tools are essential for realizing performance at scale.

< <

6 Confiden(al © 2018 Arm Limited

Your brain is no longer enough
No way around it, you need tools to achieve maximum performance.

• Supercomputers are now incomprehensibly complex.
• Naïve optimization may harm performance.
• Performance engineering tools are essential for realizing performance at scale.

7 Confidential © 2018 Arm Limited

Arm’s solution for any architecture, at any scale
Commercial tools for aarch64, x86_64, ppc64le and accelerators

Cross-platform Tools Arm Architecture Tools

DDT MAP
FORGE

PERFORMANCE
REPORTS

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

8 Confiden(al © 2018 Arm Limited

Arm’s solution for any architecture, at any scale
Commercial tools for aarch64, x86_64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

DDT MAP
FORGE

PERFORMANCE
REPORTS

9 Confidential © 2018 Arm Limited

Arm Forge = DDT + MAP
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

10 Confidential © 2018 Arm Limited

DDT: Produc+on-scale debugging
Isolate and investigate faults at scale

• Which MPI rank misbehaved?
• Merge stacks from processes and threads
• Sparklines comparing data across processes

• What source locations are related to the problem?
• Integrated source code editor
• Dynamic data structure visualization

• How did it happen?
• Parse diagnostic messages
• Trace variables through execution

• Why did it happen?
• Unique “Smart Highlighting”
• Experiment with variable values

11 Confidential © 2018 Arm Limited

DDT: Feature Highlights
Switch between

MPI ranks and
OpenMP threads

Display pending
communications

Visualise arrays

Detect memory
leaks

12 Confidential © 2018 Arm Limited

Multi-dimensional Array Viewer
What does your data look like at runtime?

• View arrays
• On a single process
• Or distributed on many ranks

• Use metavariables to browse the array
• Example: $i and $j
• Metavariables are unrelated to the variables in your

program.
• The bounds to view can be specified
• Visualise draws a 3D representation of the array

• Data can also be filtered
• “Only show if”: $value > 0 for example $value being

a specific element of the array

13 Confidential © 2018 Arm Limited

MAP: Production-scale application profiling
Iden7fy bo:lenecks and rewrite code for be:er performance

• Run with the representative workload you started with
• Measure all performance aspects with Arm Forge Professional

Examples:
$> map -profile aprun –n 8 ./example
$> map -profile jsrun –n 6 ./example

14 Confidential © 2018 Arm Limited

How MAP is different
MAP’s flagship feature is lightweight, highly scalable performance profiling

Adaptive
sampling

Sample
frequency

decreases over
time

Data never grows
too much

Run for as long
as you want

Scalable
Same scalable

infrastructure as
Allinea DDT

Merges sample
data at end of

job

Handles very
high core counts,

fast

Instruction
analysis

Categorizes
instructions

sampled

Knows where
processor spends

Lme

Shows
vectorization
and memory
bandwidth

Thread
profiling

Core-time not
thread-time

profiling
Identifies lost
compute time

Detects OpenMP
issues

Integrated Part of Forge
tool suite

Zoom and drill
into profile

Profiling within
your code

15 Confidential © 2018 Arm Limited

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
• Analyses data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous integration)
• Can be automated completely (no user intervention)Relevant advice

to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm

16 Confidential © 2018 Arm Limited

Arm Performance Reports
A high-level view of application performance with “plain English” insights

17 Confidential © 2018 Arm Limited

Arm Performance Reports Metrics
Lowers expertise requirements by explaining everything in detail right in the report.

MulC-threaded
parallelism

SIMD
parallelism

Load
imbalance

OMP
efficiency
System
usage

18 Confidential © 2018 Arm Limited

Forge and Performance Reports at ORNL

• Machines
• Titan
• Summit
• Wombat
• Your laptop
• …

• User Guides
• https://www.olcf.ornl.gov/software_package/forge/
• https://www.olcf.ornl.gov/software_package/arm-

performance-reports/

https://www.olcf.ornl.gov/software_package/forge/
https://www.olcf.ornl.gov/software_package/arm-performance-reports/

Confidential © 2018 Arm Limited

Arm Forge Quick Start
Tool cheat sheets

20 Confidential © 2018 Arm Limited

Arm DDT cheat sheet
Start DDT interactively, remotely, or from a batch script.

Load the environment module:•
$ module load • forge

Prepare the code:•
$ cc • -O0 -g myapp.c -o myapp.exe
$ • ftn -O0 -g myapp.f -o myapp.exe

Start DDT in interacDve mode:•
$ • ddt aprun -n 8 ./myapp.exe arg1 arg2 …

Or use reverse connect:•
Connect the remote client (or launch “• ddt” on the login node)
Run the follow command, or edit a job script and submit:•

$ – ddt --connect aprun -n 8 ./myapp.exe arg1 arg2 …

Offline mode•
$ • ddt --offline aprun -n 8 ./myapp.exe arg1 arg2 … (see ddt --help for more opDons)

21 Confidential © 2018 Arm Limited

Arm MAP cheat sheet
Generate profiles and view offline

• Load the environment module
• $ module load forge

• Prepare the code
• $ cc -O3 … -g myapp.c -o myapp.exe
• $ ftn -O3 … -g myapp.f -o myapp.exe

• Interactive (Collect and View)
• $ map aprun –n8 ./myapp.exe arg1 arg2

• Offline: edit the job script to run Arm MAP in “profile” mode
• $ map --profile aprun –n8 ./myapp.exe arg1 arg2

• View profile in MAP:
• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map
• (or load the corresponding file using the remote client connected to the remote system or locally)

22 Confidential © 2018 Arm Limited

Arm Performance Reports cheat sheet
Generate text and HTML reports from application runs or MAP files

Load the environment module:•

$ module load • perf-reports
No need to prepare applicaCon•

Run the applicaCon:•

perf• -report aprun -n 8 ./myapp.exe
… or, if you already have a MAP file:•

perf• -report myapp_8p_1n_YYYY-MM-DD_HH:MM.txt
Analyze• the results

$ cat myapp_8p_1n_YYYY• -MM-DD_HH:MM.txt
$ • firefox myapp_8p_1n_YYYY-MM-DD_HH:MM.html

Confidential © 2018 Arm Limited

Forge Remote Client

24 Confidential © 2018 Arm Limited

The Forge GUI and where to run it
DDT and MAP provide powerful GUIs that can be run in a variety of configurations.

Ultimately, that’s where the tools will run.

But what about the GUI?

On the head node

(interacNve mode + reverse connect)

Remote client

(remote launch + reverse

connect)

25 Confidential © 2018 Arm Limited

After connecting the client
Three options to proceed

• Works well simple jobs

• DDT can launch a batch

job for you

• Can be tricky to

replicate complicated

launch environments or

flags

Click run and launch via the
the GUI

Best opFon for complex •
batch scripts

Also for long running •
non-interacFve jobs

. $MODULESHOME/• init/bash
module load forge
ddt --connect aprun …

• Useful if you want to try

many runs within

different launch

options/environments

Edit a batch script to use
ddt --connect

Use ddt --connect from an
interactive session

26 Confidential © 2018 Arm Limited

Launching the Forge Remote Client
The remote client is a stand-alone application that runs on your local system

Install the Arm Remote Client (Linux, macOS, Windows)
h>ps://developer.arm.com/products/soCware• -development-tools/hpc/downloads/download-arm-forge

Searching for “Arm Forge Download” will typically take you here •
h>ps://www.olcf.ornl.gov/tutorials/forge• -remote-client-setup-and-usage/

Connect to the cluster with the remote client
Open Forge Remote Client•
Create a new connecIon: Remote Launch • è Configure è Add

Hostname: – <username>@titan.ccs.ornl.gov
Remote installaIon directory: – /sw/xk6/forge/18.2.2/sles11_binary

You can also get the above path by: § module load forge/18.2.2; echo $DDT_HOME
Connect!•

Training material: • ~nforr/training/arm-tools-workshop.tar.gz

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
https://www.olcf.ornl.gov/tutorials/forge-remote-client-setup-and-usage/

27 Confidential © 2018 Arm Limited

Working with the queue

• Connect the remote client
• In a terminal, SSH to Titan and launch and interactive session

• qsub -I -A <account> -q debug -l
nodes=1,walltime=01:00:00

• module load forge/18.2.2
• Launch aprun command prefixed with ddt --connect

Confidential © 2018 Arm Limited

DDT Getting Started
Crash and hang

29 Confidential © 2018 Arm Limited

C = A x B + C
Simply mul:ply and add two matrices

Algorithm

1. Rank 0 (R0) initialises matrices A, B & C
2. R0 slices the matrices A & C and sends

them to Rank 1…N (R1+)
3. R0 and R1+ perform the multiplication
4. R1+ send their results back to R0
5. R0 writes the result matrix C to file

R0

R1

RN

30 Confidential © 2018 Arm Limited

Fix a simple crash in a MPI code
Simple matrix multiply and add? No problem! Except that it crashes…

Exercise Outline
• Objectives

• Discover Arm DDT’s interface
• Interactively debug a crash in a MPI application

• Commands
$ make
$ aprun -n 4 ./mmult1_c.exe
Observe crash
$ ddt --connect ./mmult1_c.exe
Observe cause of crash

Initial Result: Crash!

31 Confidential © 2018 Arm Limited

Answer: Fix incorrect limits on k-loop
Incorrect limits lead to invalid memory access

Before
164 do i=0,size/nslices-1
165 do j=0,size-1
166 res=0.0
167 do k=size,size*size
168 res=A(i*size+k)*B(k*size+j)+res
169 end do
170 C(i*size+j)=res+C(i*size+j)
171 end do
172 end do

After
164 do i=0,size/nslices-1
165 do j=0,size-1
166 res=0.0
167 do k=0,size-1
168 res=A(i*size+k)*B(k*size+j)+res
169 end do
170 C(i*size+j)=res+C(i*size+j)
171 end do
172 end do

32 Confidential © 2018 Arm Limited

Problem #2

Fixing the crash reveals another issue

• Run the program again, and found out
why the program now hangs

• Either launch again with DDT
• Or launch without, and attach

• Ensure your nodes file is set to
$DDT_HOME/titan.nodes in the options dialog

• Click attach, from the welcome page. This will may
result in SSH prompts as DDT scans the other Titan
login/batch nodes, before detecting your job

• Alternatively, launch: ddt --connect --attach-
mpi=<aprun-pid>

Program now hangs

33 Confidential © 2018 Arm Limited

Answer: Fix incorrect limits on i-loop
Incorrect limits on i-loop lead to unmatched MPI_Send

Before
73 do i=1,nproc-2
74 call MPI_Send(mat_a(slice*i), slice, &

MPI_DOUBLE, i, 100+i, &
MPI_COMM_WORLD, ierr)

75 call MPI_Send(mat_b, size*size, &
MPI_DOUBLE, i, 200+i, &
MPI_COMM_WORLD, ierr)

76 call MPI_Send(mat_c(slice*i), slice, &
MPI_DOUBLE, i, 300+i, &
MPI_COMM_WORLD, ierr)

77 end do

After
73 do i=1,nproc-1
74 call MPI_Send(mat_a(slice*i), slice, &

MPI_DOUBLE, i, 100+i, &
MPI_COMM_WORLD, ierr)

75 call MPI_Send(mat_b, size*size, &
MPI_DOUBLE, i, 200+i, &
MPI_COMM_WORLD, ierr)

76 call MPI_Send(mat_c(slice*i), slice, &
MPI_DOUBLE, i, 300+i, &
MPI_COMM_WORLD, ierr)

77 end do

Confidential © 2018 Arm Limited

Offline Debugging

35 Confidential © 2018 Arm Limited

Run DDT in offline mode
Run the application under DDT and halt or report when a failure occurs.

• You can run the debugger in non-interactive mode
• For long-running jobs
• For automated testing, continuous integration…

• To do so, use the following arguments:
• $ ddt --offline --output=report.html aprun ./myapp.exe

• --offline enable non-interactive debugging
• --output specifies the name and output of the non-interactive debugging session

• Html
• Txt

• Add --mem-debug to enable memory debugging and memory leak detection
• Add --break-at=<location> to report stacks and variables at certain locations
• Add --trace-at=<location>,variable1,variable2 to evaluate variables/expressions at certain

locations
• See --help for more information

36 Confidential © 2018 Arm Limited

Offline Log
Snippet from an earlier crash

37 Confidential © 2018 Arm Limited

When to use offline debugging

If you’re not available•
e.g. when you have a long wait in the queue•

Scriptable•
Debug many jobs•
Nightly builds / ConJnuous integraJon•

Confidential © 2018 Arm Limited

Memory Debugging
Allocation tracking and guard pages

39 Confidential © 2018 Arm Limited

DDT’s heap memory debugging framework

When manual linking is used,
untick “Preload” box

• Caveat: Does not work with PGI and Fortran
• Handled by helper module loaded after the forge module
•module load forge/18.2.2; module load ddt-memdebug

On Titan, we need to link DDT's memory debugging libraries

• No linking required for dynamically linked binaries (handled by LD_PRELOAD)
• For static binaries, check the Forge user guide

Other systems (including Summit)

40 Confidential © 2018 Arm Limited

Three levels of heap debugging overhead

See user-guide:
Chapter 12.3.2

basic
•Detect invalid pointers
passed to memory
functions
(e.g. malloc, free,
ALLOCATE,
DEALLOCATE,...)

check-fence
Check the end of an •
allocaBon has not been
overwriDen when it is
freed.

free-protect
•Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodness
•Memory usage,
statistics, etc.

Fast free-blank
•Overwrite the bytes of
freed memory with a
known value.

alloc-blank
•Initialise the bytes of
new allocations with a
known value.

check-heap
•Check for heap
corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy
•Always copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

Balanced check-blank
•Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs
•Check the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

Thorough

41 Confidential © 2018 Arm Limited

Tri-diagonal solve: segmentation fault
Crashing with invalid memory reference. Sounds like a job for a memory debugger!

Exercise Outline
• Objectives

• Use DDT’s memory debugging features
• Use guard pages to find out-of-bounds access

• First lets run without DDT
$ module swap PrgEnv-pgi PrgEnv-gnu
$ make
$ aprun -n 4 ./trisol.exe

• Now let’s see where it crashes in DDT (without
memory debugging)
$ ddt --connect aprun -n 4
./trisol.exe

Invalid memory access

42 Confidential © 2018 Arm Limited

Let’s try memory debugging

Relink And launch in DDT

• module load ddt-memdebug
• make clean; make
• ddt --connect aprun -n 4

./trisol.exe

• Launch without guard pages enabled
and “Fast” heap debugging.

• The program seems to run fine now -
why?

43 Confidential © 2018 Arm Limited

Guard pages (aka “electric fences”)

4 kBytes
(typically)

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

• A powerful feature…:
• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

• … to be used carefully:
• Kernel limitation: up to 32k guard pages max (“mprotect fails” error)

• Beware the additional memory usage cost

44 Confidential © 2018 Arm Limited

OK, this time enable guard pages
The code appears to run fine when launched from the debugger! Why?

Add one guard page after every allocation Gotcha! Write OOB at res(k+2)

Confidential © 2018 Arm Limited

Memory Leak Detection
… and DDT in Offline Mode

46 Confidential © 2018 Arm Limited

Three levels of heap debugging overhead

See user-guide:
Chapter 12.3.2

basic
•Detect invalid pointers
passed to memory
functions
(e.g. malloc, free,
ALLOCATE,
DEALLOCATE,...)

check-fence
•Check the end of an
allocation has not been
overwritten when it is
freed.

free-protect
•Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodness
•Memory usage,
statistics, etc.

Fast free-blank
•Overwrite the bytes of
freed memory with a
known value.

alloc-blank
•Initialise the bytes of
new allocations with a
known value.

check-heap
Check for heap •
corrupHon (e.g. due to
writes to invalid
memory addresses).

realloc-copy
•Always copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

Balanced check-blank
•Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs
•Check the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

Thorough

47 Confidential © 2018 Arm Limited

Possible memory leak
Program is working great, but sometimes I run out of memory?

Exercise Outline
• Objectives

• Use DDT in offline mode

• Explore DDT’s report logbook

• Commands
$ make
$ ddt --offline \

--output=report.html \
aprun -n 4 \
./mmult3_f90.exe

$ xdg-open leak-report.html
Observe report

DDT in offline mode (--offline)

48 Confidential © 2018 Arm Limited

View the memory leak report to see unfreed allocations
Alloca7ons that are not freed when the program exits could be leaks

Click allocation to see function source Review source code to verify leak

49 Confidential © 2018 Arm Limited

DDT can also track leaks via the GUI

To see the equivalent of a leak report

“Current Memory Usage” in the GUI •
shows all current, unfreed allocaEons

To see something like the offline leak •
report, stop the program just before exit

Enable Control • -> Default Breakpoints -> Exit
Run program to ”exit”•
Open “Current Memory Usage”•

Also…

• “View pointer details” allows you to see
where pointers were allocated, freed,
and whether they point to a valid
memory location

• Memory tracking also works for GPU
allocations made with cudaMalloc

50 Confidential © 2018 Arm Limited

Another leak…

• Use either the GUI or a leak report to track down and fix the memory leak in the
“memory-leak-mandel” exercise.

Confidential © 2018 Arm Limited

Profiling with MAP
…and Performance Reports

52 Confiden)al © 2018 Arm Limited

Profiling on Titan

Static binaries

• Need to link MAP libraries
• $ module load forge/18.2.2
• $ make-profile-libraries
• Generates libraries for your MPI and

outputs instructions on how to link.

Dynamic binaries

• No need to link
• MAP will preload libraries into the

binaries automatically
• We’ll use this method today by adding -

dynamic to the link line

Confiden'al © 2018 Arm Limited

Improve performance
Efficient memory access

54 Confidential © 2018 Arm Limited

Fix inefficient memory access pattern
Revisiting the matrix multiply crash example

Exercise Outline
• Objectives

• Discover Arm MAP’s interface
• Gather initial profiles of a MVAPICH2 application

• Commands
$ make
$ map --profile aprun -n 4 \

./mmult2_f90.exe
$ map mmult2_f90_4p*.map
Observe profile

Initial Result: SLOW

55 Confiden(al © 2018 Arm Limited

Initial profile
Find the hotspot: look for the line with the highest core time.

56 Confidential © 2018 Arm Limited

Memory access patterns

• Data locality
• Temporal locality: use of data within a short time of its last use
• Spatial locality: use memory references close to memory already referenced

Temporal locality example
for (i=0 ; i < N; i++) {

for (loop=0; loop < 10; loop++) {
… = … x[i] …

}
}

Spatial locality example
for (i=0 ; i < N*s; i+=s) {

… = … x[i] …
}

57 Confiden)al © 2018 Arm Limited

Memory Accesses and Cache Misses
for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
A[i*n+j]=…

}
}

i=0, n=4

j=0 j=1

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
A[j*n+i]=…

}
}

A

Ai=0, n=4

j=0

HIT

MISS
j=1

58 Confidential © 2018 Arm Limited

Answer: Transpose matrix and interchange loops
Transposing the matrix improves locality à performance

Before
164 do i=0,size/nslices-1
165 do j=0,size-1
166 res=0.0
167 do k=0,size-1
168 res=A(i*size+k)*B(k*size+j)+res
169 end do
170 C(i*size+j)=res+C(i*size+j)
171 end do
172 end do

After
165 do i=0,size/nslices-1
166 do j=0,size-1
167 res=0.0
168 do k=0,size-1
169 res=A(i*size+k)*transB(j*size+k)+res
170 end do
171 C(i*size+j)=res+C(i*size+j)
172 end do
173 end do

59 Confidential © 2018 Arm Limited

Final profile
About 3x faster

Before

After

Confidential © 2018 Arm Limited

Debugging Imbalance
MPI I/O

61 Confidential © 2018 Arm Limited

Can we improve I/O performance?
R0 responsible for all file I/O after R1+ return results. Surely we can do better?

Exercise Outline
• Objectives

• Use MAP’s I/O profiling features

• Use performance reports to quantify speedup

• Commands
$ make
$ map --profile aprun -n 4 \

./mmult5_f90.exe
$ perf-report mmult5_f90_4p*.map
$ xdg-open mmult5_f90_4p*.html

Performance report shows MPI bound

62 Confidential © 2018 Arm Limited

Initial profile shows MPI_Finalize dominates
Time spent in MPI_Finalize is due to load imbalance in file I/O

63 Confidential © 2018 Arm Limited

Answer: improve scalability of I/O routines
Use MPI-IO to let all MPI ranks write their results to file simultaneously.

Before
97 if(myrank==0) then
100 do i=1,nproc-1
101 call MPI_Recv(mat_c(slice*i), slice, &

MPI_DOUBLE, &i, 500+i, &
MPI_COMM_WORLD, st, ierr)

102 end do
103 else
106 call MPI_Send(mat_c, slice, MPI_DOUBLE, &

0, 500+myrank, &
MPI_COMM_WORLD, ierr)

107 end if
109 if(myrank==0) then
111 call mwrite(size, mat_c, filename)
113 endif

After
102 call MPI_FILE_OPEN(MPI_COMM_WORLD, &

filename, &
MPI_MODE_CREATE+MPI_MODE_WRONLY, &
MPI_INFO_NULL, fh, ierr)

103 call MPI_FILE_SET_VIEW(fh, &
0_MPI_OFFSET_KIND, MPI_DOUBLE, &
MPI_DOUBLE, 'native’, &
MPI_INFO_NULL, ierr)

104 call MPI_FILE_WRITE_AT(fh, disp, mat_c, &
slice, MPI_DOUBLE, st, ierr)

105 call MPI_BARRIER(MPI_COMM_WORLD, ierr)
106 call MPI_FILE_CLOSE(fh, ierr)

64 Confidential © 2018 Arm Limited

New approach: use MPI-IO for file output
Each MPI rank writes its results to it’s own part of the output file

Before: runtime 13 seconds After: runtime 5 seconds (2.6x speedup)

65 Confidential © 2018 Arm Limited

Final profile shows balanced I/O and compute dominates
New approach is about 3x faster

Confidential © 2018 Arm Limited

GPU Debugging and Profiling
With DDT and MAP

67 Confidential © 2018 Arm Limited

GPU Debugging

• For many aspects, debugging on the GPU is very similar to debugging on the host
• Adding breakpoints
• Stepping through code
• Inspecting variables, arrays, etc
• Tracking memory
• Memory error checking

• But there are important differences
• Stepping will step the entire warp
• Memory error checking is provided via cuda-memcheck

68 Confidential © 2018 Arm Limited

GPU Profiling

Time spent wai:ng for accelerators•
Determined by :me spent in the CUDA (OpenACC, • etc) API calls.

GPU metrics • - include:
Percentage of :me spent in global memory accesses•
GPU temperature•
Power consump:on•

CUPTI data•
Which kernels were running and when•
On• -GPU profile data

6969

Thank You
Danke
Merci
��
�����
Gracias
Kiitos
감사합니다
ध"यवाद
הדות

Confidential © 2018 Arm Limited

